

Exercise echo in CHD: complex questions and analytics

Dr. Dan Dorobantu, University of Exeter/Bristol Heart Institute

Exercise is complex

Exercise and CHD

- Exercise → intrinsic to symptoms and QoL
- CHD → on average lower fitness
- ESC/ACC guidelines → interventions based on symptoms, less so on fitness
- Multiple factors dictating fitness and exercise capacity
- Key is to narrow down disease specific mechanisms

CHD prognostics

The role of cardiopulmonary exercise testing in predicting mortality and morbidity in people with congenital heart disease: a systematic review and meta-analysis

Curtis A. Wadey [®] ¹, Max E. Weston [®] ^{1,2†}, Dan Mihai Dorobantu [®] ^{1,3†}, Guido E. Pieles [®] ^{4,5,6}, Graham Stuart [®] ^{4,5}, Alan R. Barker [®] ¹, Rod S. Taylor [®] ⁷, and Craig A. Williams [®] ^{1*}

CPET → prognostic of long-term outcomes
Unspecific to disease mechanisms
Loss of functionality → irreversible?

Univariate data no.	of studies	Hazard ratio with 95% CI	P-value
Fontan HRR	3	0.83 [0.72, 0.95]	0.008
Fontan Peak HR	5	0.88 [0.77, 1.00]	0.059
Fontan Peak O ₂ pulse	2	0.88 [0.73, 1.07]	0.200
Fontan Peak VO ₂	10	0.82 [0.76, 0.89]	0.000
Fontan V _E /VCO ₂ Slope	5	0.94 [0.91, 0.98]	0.003
Fontan VO ₂ at the GET	2	0.94 [0.86, 1.03]	0.204
Mix HRR	3	0.78 [0.73, 0.83	0.000
Mix Peak HR	3	• 0.98 [0.95, 1.00]	0.106
Mix Peak SBP	2	• 0.98 [0.98, 0.99]	0.000
Mix Peak VO ₂	8	0.88 [0.83, 0.93	0.000
Mix V _E /VCO ₂ Slope	4	0.92 [0.87, 0.96]	0.001
TGA HRR	3	0.98 [0.93, 1.03]	0.340
TGA Peak HR	2	0.99 [0.97, 1.01]	0.382
TGA Peak SBP	2	0.89 [0.71, 1.13]	0.340
TGA Peak VO ₂	5	0.84 [0.73, 0.97]	0.017
TGA V _E /VCO ₂ Slope	3	0.94 [0.89, 1.00]	0.056
ToF HRR	2	0.70 [0.56, 0.86]	0.001
ToF Peak VO ₂	7	0.94 [0.89, 0.99]	0.018
ToF Peak watts	2	0.91 [0.71, 1.16]	0.443
ToF V _E /VCO ₂ Slope	4	0.96 [0.91, 1.02]	0.237
ToF VO ₂ at the GET	3	0.73 [0.45, 1.17]	0.190

CHD prognostics

Cardiac function (strain)→ more specific todisease type

Measured at rest → not reflective of exercise capacity

Most sensitive prognostic factor now → is it enough?

 $\textbf{STATE-OF-THE-ART REVIEW} ~\cdot~ Volume~ \textbf{37}, Issue~ \textbf{2}, P216-225, February~ 2024~ \cdot~ \textbf{Open~Access}$

▲ Download Full Issue

The Role of Speckle-Tracking Echocardiography in Predicting Mortality and Morbidity in Patients With Congenital Heart Disease: A Systematic Review and Meta-analysis

Dan M. Dorobantu, MBBS a,b · Nurul H. Amir, MSc b,c · Curtis A. Wadey, MSc a · Chetanya Sharma, MBBS d · A. Graham Stuart, MBChB, MSc b,d · Craig A. Williams, PhD $\overset{a}{\sim}$ $\overset{\boxtimes}{\sim}$ · Guido E. Pieles, PhD d,e,f Show less

Gaps in knowledge

No symptoms Normal size RV **Normal function RV** No exercise limitation Subclinical disease progression No symptoms Normal size RV **Normal function RV** Some exercise limitation **Dilated RV Normal RV function** Some exercise limitation

??? Reversible/irreversible factors ??? Heart failure "perfect" target Prevent **Arrhythmia** Sudden cardiac death Symptomatic disease progression **PVR** responder/ non responder Disease progression or **New symptoms** clinical improvement **Dilated RV RV** dysfunction at rest **Exercise limitation New symptoms Escalating care Dilated RV** Risk stratification **RV** dysfunction **PVR** is considered **Exercise limitation**

??? Pathological pathway for subclinical disease progression ???

Gaps in knowledge

Exercise echo - potential

Exercise cardiac reserve >
changes before resting
function

Exercise cardiac reserve > changes before functional capacity

Is cardiac reserve the missing link in prognosis and intervention timing decisions?

What is exercise echo?

Exercise echo in CHD - complex problems

Bristol Heart Institute

- 100 parameters can be measured and derived
- CPET analysis is only semistructured
- Reporting and measurements are time consuming
- Multiple concomitant disease modifying factors
- CHD are spectrums of diseases, not single entities

Using data analysis in ESE

The CHD ESE research workflow of my dreams

Semiautomatic CPET core report

Automatic view recognition

Hands-off core measurements

Variables of interest identification

Key mechanisms for prognostic

Current work and future pipeline (

- N=120 healthy standardised CPET-ESE studies
- 10 to 65 years old
- Full assessments:
 - Resting ECG
 - Resting echo
 - CPET data (raw, detailed)
 - Exercise ECG continuous strip
 - Stress echo @moderate and @high intensity
- Stress echo
 - >330 GB of raw DICOM data
 - Each study uses 2D moving images, Doppler, Tissue Doppler
 - >100 variables measured by experts
- Grant applications for use in CHD → underway

Future

Train new/existing
algorithms on this data
Implement and translate
into CHD
Generate clinical tools
Generate new IP

Thank you!

