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Pervasive Health Monitoring (PHM)

* Pervasive health monitoring refers to the continuous and
unobtrusive tracking of an individual’s health status using
embedded, wearable, or ambient technologies integrated into
everyday life.

- Keywords: Smart Home, Wearables, Indoor Localisation, Human
Activity Recognition

« Key aspect: Monitoring fades into background, individuals forget
that it's there (avoid Hawthorne effects).
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PHM Key Characteristics

« Continuous: Health parameters are monitored in real-time or at
frequent intervals, not just during clinical visits.

* Unobtrusive: Devices are designed to be minimally invasive—
often wearable or embedded in the environment—to avoid
disrupting daily life.

« Context-aware: Monitoring systems can interpret health data in
relation to context (e.g., activity, location, time).

- Remote accessibility: Data can be transmitted to healthcare
providers or caregivers, enabling remote care and early
iIntervention.
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PHM Technologies Involved

 Wearables: Smartwatches, fithess trackers, ECG patches.
 Ambient sensors: Sensors embedded in home environments.
* Mobile health (mHealth): Smartphone-based apps and tools.
* loT and cloud computing: For integration, storage, analysis.
- AI/ML: anomalies, predicting conditions, and personalizing.
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PHM Benefits

- Enables preventive healthcare, personalised, early diagnosis.
» Reduces hospital visits and costs through remote patient management.
* Improves quality of life, especially for elderly and chronically ill patients.

« Shifts focus from reactive, clinic-based care to proactive, patient-centered
wellness.

PHM and Al Challenge

« Supervised performs well, better understood -> requires annotations/labels
* PHM often lack annotations/labels

{ Who "owns" the data”? Who "stores/controls" the data? ]
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PHM Use Cases

Smart-home Systems

« EurValve (Cardiac)

« Parkinsons’ Disease (PD) SENSORS / TORUS
« Stroke Rehabilitation

Mobile Systems

« REST, using sleep and activity to measure mood (Hanna Kristiina Isotalus)
« Skin Tone Bias (JGI, Mingmar Sherpa)

Vital signs (PHM?)
- Peri-operative Mortality Prediction (INSPIRE Dataset, Surgeon at UHBW)

Population health
« Health Camps in Nepal (PhD Candidate Cornell, Mingmar Sherpa)
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SMART HOMES

Wearables, Smart Home, Localisation, Human Activity Recognition
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EurValve (HE 2020)
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PD SENSORS: Parkinson’s Disease
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PD SENSORS: Human Activity Recognition

* Lying Down

» Sitting

» Standing

- Walking

» Sit-to-Stand duration
* Turning duration

SCENARIO 29316 (7.5)
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PD SENSORS: Wearables, Cameras

PhD Student Dina Molnar
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P NIHR | i vserer
Stroke Rehab: Exercise Program

MSc Student Thrisha Rajkumar, "Codesign of Artificial Intelligence Algorithm for Personalised
Exercise Videos to Enhance Community-Based Rehabilitation for People with Stroke"

App Overview w
«  Built using Flutter (Android, iOS, Web)
- Co-designed with clinicians, PwS, and digital Login

health experts

* Goal: Deliver personalised home rehab support
for people with stroke

e

Personalised Routines

- Based on individual goals, stroke type, and
recovery stage .

Seminar



P NIHR i s,
Stroke Rehab: Exercise Program

Input Features Al Model Output
Session/ Exercises Natural Language » Personalised exercise
Processing (NLP) routine recommendation

Demographics

(Easy / Moderate /

Random Forest / Challenging)

Stroke diagnosis ..
1agnos Decision Trees

— [ ] — Adaptive routine level

« Based on progress and
Clinical Reasoning feedback

[ supervised learning and ]

clinical reasoning embeddings
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D BRISTOL
Tone Bias: Skin Lesion Images

Huw Day, Will Chapman
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What did the model “learn”?
o * Mole colour/shape

How to map Fitzpatrick

Skin Type -> Skin Tone? o Sk|n tone colour
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Tone Bias: Disparate Impact

Seminar

Biased DI
1.2 Jremmnmmm e s e e e e e e e e e e
Unbias DI
1.0 A !
}
Unbias DI
= R Ry o e e L L Ol S Ll L L =
a Biased DI
e
(v
(4]
(=8
E
2 !
< 0.6 ‘
e
©
Q
0
(s}
0.4
g
0.2 A
—e— Tone Disparate Impact
—a— Control Disparate Impact
0.0 IL T T T
0 50 100 150
Epoch

Vé University of
BRISTOL

Jean Golding Institute

200

r 1.2

- 1.0

-------------------------------------------------------------------- - 0.8

Loss

- 0.6

ISIC Datasets: Both
balanced and imbalanced
datasets showed DI bias

—a— Training Loss

- 0.0
250

18



Peri-Operative Mortality Prediction (UHBW)

INSPIRE: https://physionet.org/content/inspire/1.3/

Input Al Model Output

Dies during (or within
— 30 days) of operation

Survives

Combine (mostly) time
series data
Integrate PHM data?

= Patient Info
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Al (and Health) Near-term Risks

* Fake images, voices and video
- Massive job losses

- Massive survelillance

* Model discrimination/bias

* End of humanity

* “Do not forget that Al will be immensely helpful in areas like
healthcare” (why Al development should not be stopped)

Prof. Geoffrey Hinton - "Will digital intelligence replace biological intelligence?" Romanes Lecture
YouTube: https://www.youtube.com/watch?v=N1TEjTeQeg0 [last accessed 7 Jul 2025].
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University of Bristol

Thank You for Listening!!!

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLIERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Source: https://xkcd.com/
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